Programmes
Les ressources du site "Vie" pour la terminale S


Programme de SVT de terminale S
(nouveaux programmes applicables à la rentrée 2012)

Sommaire

Enseignement spécifique

Enseignement de spécialité


Enseignement spécifique

Les sciences de la vie et de la terre en classe de terminale

Le programme d'enseignement en classe terminale de la série scientifique prend appui sur ceux du collège et de la classe de seconde mais aussi sur les résultats principaux de la classe de première S. De façon à faciliter un changement de filière en fin ou en cours de première, il est possible d'aborder la classe terminale sans avoir à reprendre les démonstrations détaillées conduites en classe de première. Seuls les concepts principaux doivent être acquis. Il va de soi cependant qu'un élève de première non scientifique qui souhaiterait aborder une classe de terminale S devra fournir un effort d'adaptation.

En classe terminale de la série scientifique, les trois thématiques présentées dans le préambule général pour le lycée sont déclinées comme indiqué ci-dessous. Les pourcentages des horaires proposés donnent une indication très générale de la pondération souhaitée entre les thèmes, mais ils ne doivent pas être considérés comme des impératifs rigides. Dans le thème « La Terre dans l'Univers, la vie et l'évolution du vivant » (50 %), on étudie :

Pour aborder le thème des « Enjeux planétaires contemporains » (17 %), deux questions sont traitées :

Enfin le thème « Corps humain et santé » (33 %) est structuré autour de deux questions :

Chacun remarquera que, tout en restant en phase avec des préoccupations sociétales, les deux derniers thèmes ont un ancrage dans la science fondamentale plus affirmé que dans les classes précédentes, ce qui est la traduction dans le programme de sciences de la vie et de la Terre du caractère plus spécialisé de la classe terminale. Comme pour les classes de seconde ou de première, la liberté pédagogique du professeur est grande en classe terminale de la série scientifique. Cependant, la nécessité d'assurer la construction d'un corpus commun de compétences et la perspective du baccalauréat conduisent parfois à préciser davantage ce qui est attendu. Chaque fois que c'est possible, le programme indique les concepts à acquérir, les capacités à développer, en laissant souvent ouvert le choix des exemples. Cela entraînera, naturellement, une évolution de la définition des attendus au baccalauréat. Intéresser les élèves, leur donner le goût et l'envie d'études supérieures scientifiques, faciliter leur compréhension et leur mémorisation, sont des préoccupations qui conduisent à recommander une pédagogie active fondée sur le concret. Activités pratiques réelles, en classe et sur le terrain, sont les outils de construction des compétences attendues et exigées pour l'évaluation des capacités expérimentales.

Beaucoup de points abordés dans le programme se prêtent particulièrement bien à des approfondissements disciplinaires ou, plus encore, à des développements transdisciplinaires notamment en accompagnement personnalisé. En classe terminale de la série scientifique, les élèves étudient, en mathématiques, la notion d'intervalle de confiance. Afin d'assurer une cohérence entre les enseignements, il serait bon de présenter les résultats chiffrés utilisés en sciences de la vie et de la Terre en prenant en compte cette nouveauté. Par exemple, les données ponctuelles d'un graphique pourraient être présentées non sous la forme de simples points, mais sous la forme de barres, ainsi qu'il est d'usage dans toutes les publications scientifiques. Sans chercher à prendre en charge l'explicitation de la signification précise de cette représentation, le professeur indiquera l'usage qui en est fait et renverra les élèves aux justifications théoriques proposées dans l'enseignement de mathématiques.

Généralités sur le programme

Le programme est présenté en deux colonnes. Chaque thème comporte une brève introduction qui en indique l'esprit général. La colonne de gauche liste les connaissances (en caractère droit) qui doivent être acquises par les élèves à l'issue de la classe terminale.

En italique, la colonne de gauche comporte aussi quelques commentaires qui précisent et limitent les objectifs d'apprentissage, lorsque cela paraît nécessaire :

La colonne de droite indique les capacités et attitudes dont on attend qu'elles soient exercées dans le cadre de l'item décrit.

En préambule du programme, une liste de capacités et attitudes générales est présentée. Celles-ci sont communes à la plupart des items et ne sont pas reprises par la suite. Il convient cependant de ne pas les oublier et d'organiser leur apprentissage sur l'ensemble de l'année.

On observera que, par souci de continuité et de cohérence, le vocabulaire utilisé pour décrire les capacités et attitudes mises en oeuvre s'inspire fortement de celui utilisé pour le socle commun de connaissances et de compétences du collège (B.O.EN n° 29 du 20 juillet 2006) et déjà utilisé pour les programmes en classe de seconde et de première.

La classe terminale est à la fois l'achèvement du lycée et la porte d'entrée dans l'enseignement supérieur. Afin de faciliter la poursuite des études, il est bon de saisir les occasions qui se présentent de proposer des bilans simples et synthétiques, souvent sous forme schématique, de ce qui a été construit au long de l'enseignement secondaire. Pour faciliter l'identification de ces occasions de bilan, les chapeaux des items du programme comportent, en caractères gras, des suggestions de tels bilans.

Capacités et attitudes développées tout au long du programme

Thème 1 : La Terre dans l'Univers, la vie, l'évolution du vivant

Thème 1 - A : Génétique et évolution

Thème 1-A-1 : Le brassage génétique et sa contribution à la diversité génétique

En classe de seconde, une première approche de la diversité génétique a été effectuée. En classe de première S, les mutations ont été étudiées à l'échelle moléculaire ainsi que leur contribution à la production de diversité génétique. En classe terminale, on étudie les aspects génétiques de la sexualité en se limitant au cas des organismes pluricellulaires.
Bilans : divisions cellulaires, ADN, gène, allèles, brassage génétique.

CONNAISSANCES CAPACITES, ATTITUDES
La méiose est la succession de deux divisions cellulaires précédée comme toute division d'un doublement de la quantité d'ADN (réplication). Dans son schéma général, elle produit quatre cellules haploïdes à partir d'une cellule diploïde.
Au cours de la méiose, des échanges de fragments de chromatides (crossing-over ou enjambement) se produisent entre chromosomes homologues d'une même paire.
Les chromosomes ainsi remaniés subissent un brassage interchromosomique résultant de la migration aléatoire des chromosomes homologues lors de la 1ère division de méiose. Une diversité potentiellement infinie de gamètes est ainsi produite.
Des anomalies peuvent survenir. Un crossing-over inégal aboutit parfois à une duplication de gène. Un mouvement anormal de chromosomes produit une cellule présentant un nombre inhabituel de chromosomes. Ces mécanismes, souvent sources de troubles, sont aussi parfois sources de diversification du vivant (par exemple à l'origine des familles multigéniques).

Objectifs et mots-clés. Brassage génétique inter et intrachromosomique au cours de la méiose. Diversité des gamètes. Stabilité des caryotypes.
(Collège, seconde, première. La mitose, les mutations, les allèles. Première idée de la recombinaison.)
[Limites. La nomenclature des phases de la méiose n'est pas exigible. La description cytologique de la méiose s'appuie sur le seul cas de la production de gamètes chez les animaux diploïdes à cycle monogénétique. Les mécanismes moléculaires de la recombinaison ne sont pas au programme. L'analyse des produits de méiose se limite aux diplontes par l'étude des descendants issus d'un croisement avec un homozygote récessif pour tous les loci étudiés : la génétique des haplontes n'est pas au programme.]
Convergence. Mathématiques : probabilités.
Pistes. Croisement entre la combinatoire génétique et la formalisation mathématique.
Ordonner et interpréter des observations microscopiques de cellules en méiose.
Effectuer une analyse statistique simple d'un brassage interchromosomique (en analysant des produits de méiose).
Représenter schématiquement le déroulement de la méiose à partir d'une cellule diploïde.
Effectuer une analyse statistique simple d'un remaniement intrachromosomique (en analysant des produits de méiose).
Illustrer schématiquement le mécanisme du crossing-over et ses conséquences génétiques.
Illustrer schématiquement les mécanismes expliquant certaines anomalies chromosomiques.
Au cours de la fécondation, un gamète mâle et un gamète femelle s'unissent : leur fusion conduit à un zygote. La diversité génétique potentielle des zygotes est immense. Chaque zygote contient une combinaison unique et nouvelle d'allèles. Seule une fraction de ces zygotes est viable et se développe.

Objectifs et mots-clés. La fécondation est abordée à partir d'un exemple choisi chez une espèce animale présentant un cycle monogénétique diplophasique.
(Collège, seconde, première. Première idée des mécanismes de la fécondation.)
[Limites. Seules les notions de portée générale sont exigibles. Si l'élève doit pouvoir illustrer son propos par un exemple, aucun n'est imposé par le programme. Si l'on met en évidence la fusion des matériels nucléaires, les autres phénomènes cellulaires de la fécondation (réaction acrosomiale, réaction corticale, activation métabolique) sont hors programme.]
Pistes. Approche mathématique du risque génétique.
Observer et interpréter des observations microscopiques relatives à la fécondation.
Réaliser une analyse statistique simple des résultats d'une fécondation Décrire schématiquement un exemple de fécondation et ses conséquences génétiques.
Thème 1-A-2 : Diversification génétique et diversification des êtres vivants

L'association des mutations et du brassage génétique au cours de la méiose et de la fécondation ne suffit pas à expliquer la totalité de la diversification génétique des êtres vivants. Il s'agit ici de donner une idée de l'existence de la diversité des processus impliqués, sans chercher une étude exhaustive. En outre, une diversification des êtres vivants n'est pas toujours liée à une diversification génétique.
Bilan : processus de diversification du vivant.

CONNAISSANCES CAPACITES, ATTITUDES
D'autres mécanismes de diversification des génomes existent : hybridations suivies de polyploïdisation, transfert par voie virale, etc. S'agissant des gènes impliqués dans le développement, des formes vivantes très différentes peuvent résulter de variations dans la chronologie et l'intensité d'expression de gènes communs, plus que d'une différence génétique. Une diversification des êtres vivants est aussi possible sans modification des génomes : associations (dont symbioses) par exemple. Chez les vertébrés, le développement de comportements nouveaux, transmis d'une génération à l'autre par voie non génétique, est aussi source de diversité : chants d'oiseaux, utilisation d'outils, etc. Objectifs et mots-clés. Il s'agit de montrer la variété des mécanismes de diversification à l'oeuvre et l'apport de la connaissance des mécanismes du développement dans la compréhension des mécanismes évolutifs. [Limites. Un traitement exhaustif des mécanismes possibles n'est pas attendu.]
Étudier les modalités d'une modification du génome. Comparer des gènes du développement pour en identifier les homologies de séquences. Interpréter un changement évolutif en termes de modification du développement. Étudier un exemple de diversification du vivant sans modification du génome.
Thème 1-A-3 : De la diversification des êtres vivants à l'évolution de la biodiversité

La biodiversité a été définie et présentée comme produit et étape de l'évolution. Dans les classes précédentes, il a été montré que des individus porteurs de diverses combinaisons génétiques peuvent différer par leurs potentiels reproducteurs (plus grande attirance sexuelle exercée sur le partenaire ; meilleure résistance à un facteur du milieu, aux prédateurs ; meilleur accès à la nourriture, etc.). Cette influence, associée à la dérive génétique, conduit à une modification de la diversité génétique des populations au cours du temps.
Bilan : la biodiversité et sa modification.

CONNAISSANCES CAPACITES, ATTITUDES
Sous l'effet de la pression du milieu, de la concurrence entre êtres vivants et du hasard, la diversité des populations change au cours des générations. L'évolution est la transformation des populations qui résulte de ces différences de survie et du nombre de descendants.

Objectifs et mots-clés. On insistera sur l'existence d'une survie différentielle et sur la diversité de l'effectif des descendants des individus qui conduisent à une modification des populations. Sélection naturelle et dérive génétique sont replacées dans ce cadre global.
Analyser une situation concrète, à partir d'arguments variés (données génétiques, paléontologiques, biologiques, arbres phylogénétiques, etc.).
La diversité du vivant est en partie décrite comme une diversité d'espèces.
La définition de l'espèce est délicate et peut reposer sur des critères variés qui permettent d'apprécier le caractère plus ou moins distinct de deux populations (critères phénotypiques, interfécondité, etc.). Le concept d'espèce s'est modifié au cours de l'histoire de la biologie.
Une espèce peut être considérée comme une population d'individus suffisamment isolés génétiquement des autres populations. Une population d'individus identifiée comme constituant une espèce n'est définie que durant un laps de temps fini.
On dit qu'une espèce disparaît si l'ensemble des individus concernés disparaît ou cesse d'être isolé génétiquement. Une espèce supplémentaire est définie si un nouvel ensemble s'individualise.

Objectifs et mots-clés. Dans la continuité de l'approche des classes précédentes, il convient de montrer que l'espèce est une réalité statistique, collective et que c'est dans cette optique que la spéciation peut être envisagée.
[Limites. Il ne s'agit pas de conduire à une définition incontestable de l'espèce ou de la spéciation, mais simplement de montrer que ce concept dont on ne peut aujourd'hui se passer pour décrire le monde vivant est pourtant d'une nature très délicate.]
Analyser des exemples de spéciation dans des contextes et selon des mécanismes variés à partir de documents fournis.
Analyser des informations relatives à la définition des limites d'une espèce vivante.
Analyser des exemples d'hybrides interspécifiques fertiles ou non.
Thème 1-A-4 : Un regard sur l'évolution de l'Homme

Homo sapiens peut être regardé, sur le plan évolutif, comme toute autre espèce. Il a une histoire évolutive et est en perpétuelle évolution. Cette histoire fait partie de celle, plus générale, des primates.

CONNAISSANCES CAPACITES, ATTITUDES
D'un point de vue génétique, l'Homme et le chimpanzé, très proches, se distinguent surtout par la position et la chronologie d'expression de certains gènes.
Le phénotype humain, comme celui des grands singes proches, s'acquiert au cours du développement pré et postnatal, sous l'effet de l'interaction entre l'expression de l'information génétique et l'environnement (dont la relation aux autres individus).
Les premiers primates fossiles datent de - 65 à -50 millions d'années. Ils sont variés et ne sont identiques ni à l'Homme actuel, ni aux autres singes actuels. La diversité des grands primates connue par les fossiles, qui a été grande, est aujourd'hui réduite.
Homme et chimpanzé partagent un ancêtre commun récent. Aucun fossile ne peut être à coup sûr considéré comme un ancêtre de l'homme ou du chimpanzé.
Le genre Homo regroupe l'Homme actuel et quelques fossiles qui se caractérisent notamment par une face réduite, un dimorphisme sexuel peu marqué sur le squelette, un style de bipédie avec trou occipital avancé et aptitude à la course à pied, une mandibule parabolique, etc. Production d'outils complexes et variété des pratiques culturelles sont associées au genre Homo, mais de façon non exclusive. La construction précise de l'arbre phylogénétique du genre Homo est controversée dans le détail.

Objectif. Appliquer au cas Homo sapiens les acquis en matière d'évolution.
(Collège, première : premières idées sur la place de l'Homme dans l'évolution ; pigments rétiniens et place de l'Homme parmi les primates.)
[Limites. L'étude de fossiles n'a aucun objectif exhaustif. Il s'agit simplement d'illustrer la diversité des primates fossiles, notamment de ceux habituellement classés dans le genre
Homo. Aucun arbre phylogénétique précis n'est exigible mais comment, en s'appuyant sur tel ou tel caractère, on aborde sa construction. La controverse sur le détail précis de l'arbre est évoquée et illustre une question scientifique en devenir. Cependant, les différentes conceptions en présence ne sont en aucun cas exigibles.] Convergence. Philosophie : Regards croisés sur l'Homme.
Pistes. Étude comparée des primates ; arts de la préhistoire.
Comparer les génotypes de différents primates.
Positionner quelques espèces de primates actuels ou fossiles, dans un arbre phylogénétique, à partir de l'étude de caractères ou de leurs productions.
Thème 1-A-5 : Les relations entre organisation et mode de vie, résultat de l'évolution : l'exemple de la vie fixée chez les plantes

L'organisation fonctionnelle des plantes (angiospermes) est mise en relation avec les exigences d'une vie fixée en relation avec deux milieux, l'air et le sol. Au cours de l'évolution, des processus trophiques, des systèmes de protection et de communication, ainsi que des modalités particulières de reproduction se sont mis en place. L'objectif de ce thème est, sans rentrer dans le détail des mécanismes, de comprendre les particularités d'organisation fonctionnelle de la plante et de les mettre en relation avec le mode de vie fixé.
Bilans : schéma général de la plante, organisation et fonction de la fleur.

CONNAISSANCES CAPACITES, ATTITUDES
Les caractéristiques de la plante sont en rapport avec la vie fixée à l'interface sol/air dans un milieu variable au cours du temps.
Elle développe des surfaces d'échanges de grande dimension avec l'atmosphère (échanges de gaz, capture de la lumière) et avec le sol (échange d'eau et d'ions). Des systèmes conducteurs permettent les circulations de matières dans la plante, notamment entre systèmes aérien et souterrain.
Elle possède des structures et des mécanismes de défense (contre les agressions du milieu, les prédateurs, les variations saisonnières).

Objectif et mots-clés. Il s'agit d'aboutir à une vue globale de la plante, de ses différents organes et de leurs fonctions. Un schéma fonctionnel synthétique permet de présenter les notions à retenir. L'étude d'une coupe anatomique permet de repérer les deux grands types de tissus conducteurs.
(Collège. Première approche de l'organisation végétale.)
[Limites. Le raisonnement s'appuie uniquement sur l'observation d'une plante en tant qu'organisme. L'anatomie végétale n'est pas un objectif de formation : on se limite au repérage du phloème et du xylème et à l'indication de leurs rôles - sans mécanisme - dans la conduction des sèves. Les mécanismes immunitaires des végétaux ne sont pas au programme.]
Pistes. Modélisation fractale de l'augmentation de surface du système foliaire ou racinaire. Étude d'hormones végétales et de leurs actions sur la croissance, le passage de la mauvaise saison.
Conduire une étude morphologique simple d'une plante commune.
Réaliser et observer une coupe anatomique dans une tige ou une racine.
Effectuer une estimation (ordre de grandeur) des surfaces d'échanges d'une plante par rapport à sa masse ou son volume. Comparer avec un mammifère par exemple.
Représenter schématiquement l'organisation d'une plante-type et savoir en décrire un exemple.
Recenser, extraire et exploiter des informations concernant des mécanismes protecteurs chez une plante (production de cuticules, de toxines, d'épines, etc.).
Analyser les modalités de résistance d'une plante aux variations saisonnières.
L'organisation florale, contrôlée par des gènes de développement, et le fonctionnement de la fleur permettent le rapprochement des gamètes entre plantes fixées.
La pollinisation de nombreuses plantes repose sur une collaboration animal pollinisateur/plante produit d'une coévolution.
À l'issue de la fécondation, la fleur se transforme en fruits contenant des graines. La dispersion des graines est nécessaire à la survie et à la dispersion de la descendance. Elle repose souvent sur une collaboration animal disséminateur/plante produit d'une coévolution.

Objectif et mots-clés. Fleur, pistil (ovaire, ovule), étamine, pollen. Fruit, graine. Pollinisation par le vent et les animaux.
[Limites. Seule une vision élémentaire de la reproduction sexuée est ici attendue. Sont explicitement hors programme : la structure du grain de pollen, sa formation, les mécanismes de la double fécondation, les mécanismes de formation de la graine ou du fruit. La coévolution est constatée comme un résultat, mais ses mécanismes ne sont pas demandés. La connaissance exhaustive des gènes du développement floral.]
Pistes. Études de coévolution. Étude des mécanismes de transformation de la fleur en fruit.
Réaliser la dissection d'une fleur simple et traduire les observations sous une forme schématique simple (diagramme floral).
Mettre en évidence les relations entre une plante et un animal pollinisateur.
Mettre en évidence les relations entre une plante et un animal assurant sa dissémination.

Thème 2 : Enjeux planétaires contemporains

Thème 2-B : La plante domestiquée

Les plantes (on se limite aux angiospermes), directement ou indirectement (par l'alimentation des animaux d'élevage) sont à la base de l'alimentation humaine. Elles constituent aussi des ressources dans différents domaines : énergie, habillement, construction, médecine, arts, pratiques socioculturelles, etc. La culture des plantes constitue donc un enjeu majeur pour l'humanité.
Sans chercher l'exhaustivité, il s'agit de montrer que l'Homme agit sur le génome des plantes cultivées et donc intervient sur la biodiversité végétale. L'utilisation des plantes par l'Homme est une très longue histoire, qui va des pratiques empiriques les plus anciennes à la mise en oeuvre des technologies les plus modernes.
Bilan : sélection génétique des plantes ; génie génétique.

CONNAISSANCES CAPACITES, ATTITUDES
La sélection exercée par l'Homme sur les plantes cultivées a souvent retenu (volontairement ou empiriquement) des caractéristiques génétiques différentes de celles qui sont favorables pour les plantes sauvages.
Une même espèce cultivée comporte souvent plusieurs variétés sélectionnées selon des critères différents ; c'est une forme de biodiversité.
Les techniques de croisement permettent d'obtenir de nouvelles plantes qui n'existaient pas dans la nature (nouvelles variétés, hybrides, etc.).
Les techniques du génie génétique permettent d'agir directement sur le génome des plantes cultivées.

Objectifs et mots-clés. Il s'agit de montrer les différentes modalités d'action humaine sur les caractéristiques génétiques des plantes cultivées.
[Limites. Les éléments scientifiques introduits ici permettent un débat sur l'usage de telle ou telle méthode, mais il n'entre pas dans les objectifs de l'enseignement scientifique de trancher, à lui seul, la controverse.]
Convergences. Histoire des arts : la modification des aliments de l'Homme au travers de leur représentation picturale. Histoire et géographie : histoire des plantes cultivées et des civilisations.
Comparer une plante cultivée et son ancêtre naturel supposé.
Recenser, extraire et exploiter des informations afin de comprendre les caractéristiques de la modification génétique d'une plante.

Thème 3 : Corps humain et santé

Dans ce thème, le projet est d'aborder quelques sujets ayant un rapport direct avec de grandes questions de santé en même temps que les bases scientifiques nécessaires pour les traiter. Il s'agit de montrer que la réflexion sur la santé ne peut être conduite sans des connaissances scientifiques solides.

Thème 3-A Le maintien de l'intégrité de l'organisme : quelques aspects de la réaction immunitaire

Le système immunitaire est constitué d'organes, de cellules et de molécules qui contribuent au maintien de l'intégrité de l'organisme. Le système immunitaire tolère habituellement les composantes de l'organisme mais il réagit à la perception de signaux de danger (entrée d'éléments étrangers, modification des cellules de l'organisme). Par l'activité de ses différents effecteurs, il réduit ou élimine le trouble à l'origine de sa mise en action. La bonne santé d'un individu résulte d'un équilibre dynamique entretenu par des réactions immunitaires en réponse à des dérèglements internes ou des agressions du milieu extérieur (physiques, chimiques ou biologiques). Chez les vertébrés, ce système comprend un ensemble de défenses aux stratégies très différentes : l'immunité innée et l'immunité adaptative.
Bilan : la défense de l'organisme contre les agressions ; immunité ; mémoire immunitaire.

Thème 3-A-1 : La réaction inflammatoire, un exemple de réponse innée
CONNAISSANCES CAPACITES, ATTITUDES
L'immunité innée ne nécessite pas d'apprentissage préalable, est génétiquement héritée et est présente dès la naissance. Elle repose sur des mécanismes de reconnaissance et d'action très conservés au cours de l'évolution. Très rapidement mise en oeuvre, l'immunité innée est la première à intervenir lors de situations variées (atteintes des tissus, infection, cancer). C'est une première ligne de défense qui agit d'abord seule puis se prolonge pendant toute la réaction immunitaire.
La réaction inflammatoire aiguë en est un mécanisme essentiel. Elle fait suite à l'infection ou à la lésion d'un tissu et met en jeu des molécules à l'origine de symptômes stéréotypés (rougeur, chaleur, gonflement, douleur). Elle prépare le déclenchement de l'immunité adaptative.

Objectif et mots-clés. Organes lymphoïdes, macrophages, monocytes, granulocytes, phagocytose, mastocytes, médiateurs chimiques de l'inflammation, réaction inflammatoire, médicaments anti-inflammatoires. Il s'agit sur un exemple de montrer le déclenchement d'une réaction immunitaire et l'importance de la réaction inflammatoire.
(Collège. Les bases d'immunologie.)
[Limites : la description exhaustive du CMH. La description des récepteurs de l'immunité innée (PRR), des signaux de dangers et les signatures des pathogènes (PAMP). La mise en perspective évolutive du système immunitaire est signalée et permet de rattacher la réflexion sur la santé à cette thématique de sciences fondamentales, mais elle ne fait pas l'objet d'une argumentation particulière.]
Observer et comparer une coupe histologique ou des documents en microscopie avant et lors d'une réaction inflammatoire aiguë.
Recenser, extraire et exploiter des informations, sur les cellules et les molécules impliquées dans la réaction inflammatoire aiguë.
Recenser, extraire et exploiter des informations, y compris expérimentales, sur les effets de médicaments antalgiques et anti-inflammatoires.
Thème 3-A-2 : L'immunité adaptative, prolongement de l'immunité innée
CONNAISSANCES CAPACITES, ATTITUDES
Alors que l'immunité innée est largement répandue chez les êtres vivants, l'immunité adaptative est propre aux vertébrés. Elle s'ajoute à l'immunité innée et assure une action plus spécifique contre des molécules, ou partie de molécules.
Les cellules de l'immunité adaptative ne deviennent effectrices qu'après une première rencontre avec un antigène grâce aux phénomènes de sélection, d'amplification et de différenciation clonales.
Les défenses adaptatives associées avec les défenses innées permettent normalement d'éliminer la cause du déclenchement de la réaction immunitaire. Le système immunitaire, normalement, ne se déclenche pas contre des molécules de l'organisme ou de ses symbiotes. Cela est vrai notamment pour la réponse adaptative.
Pourtant, les cellules de l'immunité adaptative, d'une grande diversité, sont produites aléatoirement par des mécanismes génétiques complexes qui permettent potentiellement de répondre à une multitude de molécules. La maturation du système immunitaire résulte d'un équilibre dynamique entre la production de cellules et la répression ou l'élimination des cellules autoréactives.

Objectif et mots-clés. Cellule présentatrice de l'antigène, lymphocytes B, plasmocytes, immunoglobulines (anticorps), séropositivité, lymphocytes T CD4, lymphocytes T auxiliaire, interleukine 2, lymphocytes T CD8, lymphocytes T cytotoxiques ; sélection, amplification, différenciation clonales. L'exemple d'une infection virale (grippe) fait comprendre la mise en place des défenses adaptatives et comment, en collaboration avec les défenses innées, elles parviennent à l'élimination du virus. On insistera sur la réponse adaptative à médiation humorale. On profitera de cette étude pour signaler le mode d'action du VIH et la survenue de maladies opportunistes dans le cas du Sida. L'existence d'une maturation du système immunitaire n'est présentée que de façon globale.
[Limites : la description des mécanismes génétiques à l'origine de la diversité du répertoire immunologique. La présentation de l'antigène aux lymphocytes T, la description du cycle de développement du VIH.]
Recenser, extraire et exploiter des informations, y compris expérimentales, sur les cellules et les molécules intervenant dans l'immunité adaptative.
Concevoir et réaliser une expérience permettant de caractériser la spécificité des molécules intervenant dans l'immunité adaptative
Concevoir et réaliser des expériences permettant de mettre en évidence les immunoglobulines lors de la réaction immunitaire.
Thème 3-A-3 : Le phénotype immunitaire au cours de la vie
CONNAISSANCES CAPACITES, ATTITUDES
Une fois formés, certains effecteurs de l'immunité adaptative sont conservés grâce à des cellules-mémoires à longue durée de vie.
Cette mémoire immunitaire permet une réponse secondaire à l'antigène plus rapide et quantitativement plus importante qui assure une protection de l'organisme vis-à-vis de cet antigène.
La vaccination déclenche une telle mémorisation. L'injection de produits immunogènes mais non pathogènes (particules virales, virus atténués, etc.) provoque la formation d'un pool de cellules mémoires dirigées contre l'agent d'une maladie. L'adjuvant du vaccin déclenche la réaction innée indispensable à l'installation de la réaction adaptative.
Le phénotype immunitaire d'un individu se forme au gré des expositions aux antigènes et permet son adaptation à l'environnement. La vaccination permet d'agir sur ce phénomène.
La production aléatoire de lymphocytes naïfs est continue tout au long de la vie mais, au fil du temps, le pool des lymphocytes mémoires augmente.

Objectif et mots-clés. Mémoire immunitaire, vaccins. Il s'agit de faire comprendre la base biologique de la stratégie vaccinale qui permet la protection de l'individu vacciné et de la population. On indique que l'adjuvant du vaccin prépare l'organisme au déclenchement de la réaction adaptative liée au vaccin, un peu comme la réaction inflammatoire prépare la réaction adaptative naturelle.
(Collège. Premières idées sur les vaccins.)
[Limites : la description exhaustive des types de vaccins et des pratiques vaccinales.]
Recenser, extraire et exploiter des informations sur la composition d'un vaccin et sur son mode d'emploi.

Thème 3-B Neurone et fibre musculaire : la communication nerveuse

En partant des acquis de la classe de seconde, il s'agit d'apporter une compréhension plus fine du système neuromusculaire et de comprendre un test médical couramment utilisé. C'est aussi l'occasion d'apporter les connaissances indispensables concernant le neurone et la synapse.
Bilan : neurone, synapse chimique ; plasticité cérébrale.

Thème 3-B-1 : Le réflexe myotatique, un exemple de commande réflexe du muscle

Le réflexe myotatique sert d'outil diagnostique pour apprécier l'intégrité du système neuromusculaire : par un choc léger sur un tendon, on provoque la contraction du muscle étiré (exemple du réflexe rotulien ou achilléen).

CONNAISSANCES CAPACITES, ATTITUDES
Le réflexe myotatique est un réflexe monosynaptique. Il met en jeu différents éléments qui constituent l'arc-réflexe.
Le neurone moteur conduit un message nerveux codé en fréquence de potentiels d'actions.
La commande de la contraction met en jeu le fonctionnement de la synapse neuromusculaire.

Objectifs et mots-clés. Les éléments de l'arc-réflexe : stimulus, récepteur, neurone sensoriel, centre nerveux, neurone moteur, effecteur (fibre musculaire). Caractéristiques structurales et fonctionnelles du neurone (corps cellulaire, dendrite, axone, potentiels de repos et d'action). Synapse chimique (bouton synaptique, neuromédiateur - acétylcholine, exocytose, fente synaptique, récepteur post-synaptique, potentiel d'action musculaire). Codage électrique en fréquence, codage chimique en concentration.
[Limites. Sont hors programme : les mécanismes ioniques des potentiels membranaires, les potentiels de récepteurs, les potentiels post-synaptiques et les mécanismes de déclenchement du potentiel d'action musculaire, le couplage excitation-contraction.]
Recenser, extraire et exploiter des informations, afin de caractériser le fonctionnement d'une synapse chimique.
Interpréter les effets de substances pharmacologiques sur le fonctionnement de synapses chimiques.
Thème 3-B-2 : De la volonté au mouvement
CONNAISSANCES CAPACITES, ATTITUDES
L'exploration du cortex cérébral permet de découvrir les aires motrices spécialisées à l'origine des mouvements volontaires. Les messages nerveux moteurs qui partent du cerveau cheminent par des faisceaux de neurones qui descendent dans la moelle jusqu'aux motoneurones. C'est ce qui explique les effets paralysants des lésions médullaires.
Le corps cellulaire du motoneurone reçoit des informations diverses qu'il intègre sous la forme d'un message moteur unique et chaque fibre musculaire reçoit le message d'un seul motoneurone.

Objectifs et mots-clés. Motoneurone, aire motrice. En se limitant à l'exploitation d'imageries cérébrales simples, il s'agit de montrer l'existence d'une commande corticale du mouvement.
[Limites. Les voies nerveuses de la motricité volontaire sont hors programme.]
Recenser, extraire et exploiter des informations, afin de caractériser les aires motrices cérébrales.
Thème 3-B-3 : Motricité et plasticité cérébrale
CONNAISSANCES CAPACITES, ATTITUDES
La comparaison des cartes motrices de plusieurs individus montre des différences importantes. Loin d'être innées, ces différences s'acquièrent au cours du développement, de l'apprentissage des gestes et de l'entraînement. Cette plasticité cérébrale explique aussi les capacités de récupération du cerveau après la perte de fonction accidentelle d'une petite partie du cortex moteur. Les capacités de remaniements se réduisent tout au long de la vie, de même que le nombre de cellules nerveuses. C'est donc un capital à préserver et entretenir.

Objectifs et mots-clés. En s'appuyant sur les notions sur la plasticité cérébrale acquise en première par l'étude de la vision, il s'agit de montrer que cette plasticité affecte aussi le cortex moteur et l'importance de cette plasticité, tant dans l'élaboration d'un phénotype spécifique que dans certaines situations médicales.
(Première. Notions sur la plasticité cérébrale.)
[Limites. La plasticité cérébrale n'est pas abordée dans ses mécanismes moléculaires : on se contente de constater des modifications des aires corticales.]
Recenser et exploiter des informations afin de mettre en évidence la plasticité du cortex moteur.

Enseignement de spécialité

L'enseignement de spécialité de sciences de la vie et de la Terre prépare l'élève à une poursuite d'études dans ces domaines scientifiques en renforçant l'acquisition des connaissances et démarches spécifiques qui y sont associées. Le programme est organisé en trois thèmes, dans le respect de la logique structurant les programmes du lycée en relation avec les Univers-métiers correspondants. C'est l'occasion pour l'élève de mieux appréhender la perspective de ses futures études, de préciser son choix d'orientation et de faciliter la transition vers l'enseignement supérieur. L'enseignement de spécialité se doit d'être délibérément concret. Les objectifs de connaissance sont ainsi modestes, mais ils doivent être acquis grâce à la mise en oeuvre de démarches d'investigation (fondées sur le raisonnement, l'observation, l'habileté expérimentale, le débat argumenté, etc.) qui offrent une place prépondérante à l'initiative de l'élève, au développement de son autonomie et de ses compétences.
Les thèmes abordés permettront notamment de développer par la pratique des capacités méthodologiques portant sur la microscopie, l'expérimentation (éventuellement assistée par ordinateur), l'analyse du terrain, la recherche documentaire, la modélisation numérique, etc.

Thème 1 : La Terre dans l'Univers, la vie, l'évolution de la vie

Énergie et cellule vivante (on se limite aux cellules eucaryotes)

Tout système vivant échange de la matière et de l'énergie avec ce qui l'entoure. Il est le siège de couplages énergétiques.

Thème 3 : Corps humain et santé

Glycémie et diabète

La glycémie est un paramètre du milieu intérieur. Son maintien par l'organisme dans une gamme de valeurs étroite est un indicateur et une condition de bonne santé.