Why Biologists should support the exploration of Mars

Marie-Christine Maurel,1 and Giuseppe Zaccai2*

Summary
Physicists, chemists and geologists in the USA and Europe propose that the search for extraterrestrial life is an important justification for the exploration of Mars. Biologists, however, much more excited by the advent of the postgenome sequencing era, in general display little enthusiasm for planetary exploration. We argue that the search for traces of life on Mars represents a major thought-provoking challenge for the life sciences that should be taken up by the biological community. BioEssays 23:1–3, 2001. © 2001 John Wiley & Sons, Inc.

The search for life on Mars, past, dormant or extant, is one of the most thought-provoking challenges for biology. It supported by evidence that liquid water and potential sources of energy, the key ingredients for the development of living organisms (as we know them), were present on ancient Mars and may still be there not far below the planet’s surface. Analysis of samples from Mars should be of fundamental interest to all biologists and especially those working on the definition and origin of life, on the evolution and adaptation of molecular mechanisms in living cells, or on the development of organisms within ecosystems.

If a Martian were to write a paper on Earth biology based on the science pages of influential newspapers and policy publications of research institutes, she or he would not hesitate to conclude that the basic principles of biology are now known and that we have entered a stage of systematic studies to develop applications in medicine and agriculture, i.e. that biology is no longer a science. The most important and fundamental question in biology persists, however: “what is the nature and origin of life?” Looking for traces of life on Mars is within our reach and a challenging way to focus on this question. Life on Earth has adapted to the most extreme environments but all known living organisms have the following properties in common. (1) They are based on cells, (2) both water and salt are essential and cell membranes contain pumps to exclude NaCl and include KCl in the cytoplasm, and (3) although genetic information flows in the direction DNA to RNA to protein, protein is required in all steps, showing that the process is an end result of evolution and does not represent a progression or macromolecular hierarchy. This means that all living organisms, even the ones that we consider as most ancient or primitive, are well along the path of evolution and that we know nothing about what preceded them. The quest for the apparition of life elsewhere in the solar system should start now in the way that we approach biological problems in our laboratories. It will colour our understanding of the most fundamental biological processes, from the molecular mechanisms within the living cell to biodiversity and the development of organisms within ecosystems, their adaptation to external conditions and their evolution. In this framework, biochemical and molecular biology approaches are being developed to identify potential molecular signatures of life. In addition to work on RNA, DNA, proteins, their precursors and other metabolic products, these approaches also include studies of novel analogues of information encoding molecules, such as chemically modified nucleosides, for example.(1,2)

Biochemistry in the 19th century and molecular biology in the 20th century were born from fundamental scientific discoveries made by chemists and physicists who were interested in the processes of life. Biologists, although at first understandably reticent about what they saw as absurd reductionism, eventually admitted the usefulness of these approaches and they have become the bases of modern biology. Nevertheless biology as a science still contains concepts that cannot be reduced to physics and chemistry. The most fundamental hypothesis in biology refers to the structure—function relation: if a macromolecule “exists” in a biological context, it is because it has been selected by evolution, by virtue of its function. A physicist or chemist may say that their catalytic properties are useful functions of naturally occurring zeolites; but such materials did not appear spontaneously in nature because they display these properties. Cells are often discussed as wonderfully synchronised machines but the more insight that we gain into their molecular mechanisms, the more we realise that this “harmony” is based on waste by selective elimination and generally cumbersome

2Institut de Biologie Structurale, Grenoble, France.
*Correspondence to: Giuseppe Zaccai, Institut de Biologie Structurale, 41 rue Jules Horowitz, 38027 Grenoble Cedex 1, France.
E-mail: zaccai@ibs.fr (Marie-Christine Maurel is a biochemist and a member of the French scientific committee for the study of Mars samples, CSEEM; Giuseppe Zaccai has turned to biology after a PhD in physics and works on Archaea and biological macromolecules under extreme conditions)

BioEssays 23.00 1
strategies. This is because the organising power of nature apparently does not occur from rational design, but has been built up in time through evolutionary processes. The very existence of a cell, its place in an organism, and the reactions that take place within it, can only be understood if its history is understood. The understanding of the origins of life on Earth, on Mars or elsewhere intimately involves the complex conceptual framework unique to biology, and will not be obtained on the basis of physics and chemistry alone, although these disciplines will continue to provide indispensable ways and means to approach the problems. (3) Despite this, many biologists remain reticent about supporting “large science” projects. Even facilities such as synchrotrons do not enjoy their full approval, while they are quite happy to acknowledge the importance of protein structures for their studies. The “how many pipettes for one synchrotron” argument is now extended to “how many beam-lines for one trip to Mars”.

The surface of Mars today is cold and dry—conditions, which, although generally inhospitable to supporting life, are extremely favourable for the preservation of its traces. It is a reasonable bet that if biological cellular structures or macromolecules were trapped in salt crystals when the Martian seas evaporated, for example, they would be very well conserved for our observation and analysis. (4) With our present knowledge, it is not likely that traces of life on Mars would include those of large plants or animals (forests or cows, as once suggested by Carl Sagan...) as these would have been detected from orbit. Traces are likely to be microscopic or even molecular, which means that there is no alternative to bringing samples back to Earth for analysis. (5) Even though it is true that a sample from just about anywhere on the Earth’s surface contains traces of micro-organisms, we may not be so lucky with Mars and it is essential that biologists should be actively involved in the choice of sampling sites. A scheduled trip to Mars to bring back samples puts our backs to the wall with an important question: apart from the obvious precautions and quarantine to avoid cross-contamination, do we have the knowledge and tools to deal with the sample return? We believe that a good deal of preliminary work in biology is necessary, with special emphasis on developing new concepts. A large effort is now made towards developing special instrumentation for sample analysis, but new, radical ideas in biology are also required. Non-destructive methods will be required to deal with dynamical biochemical systems. These methods, which should extend beyond the analytical approach, must be able to deal with studies of reactivity, adaptability and kinetics involved in characteristic biological events, such as metabolic pathways or information transfer. As is clear from examples below, such work will also provide important results for Earthly applications so perhaps it will not be too difficult to obtain serious support for it, and funding.

Macromolecules are the smallest signatures of life. They encode information and are catalytically active with great specificity. Not enough is known about how they behave in a cell-free environment. How are their structures, stability, dynamics and interactions affected? (6) The modern concern with the safety of genetically modified organisms and the fate of “free” DNA would also be addressed by such studies. Organisms such as the ones belonging to the evolutionary domain of the Archaea, and macromolecules adapted to extreme Earth environments are currently being studied under the cover of potential biotechnological applications. (7) An understanding of the reactivity of biological structures that leads from macromolecular to cellular adaptation to an extreme environment, however, is absolutely fundamental. In this context, the term reactivity must be accepted in its broadest sense to include all the properties of a system that contributes to its biological function. These studies will require an approach of tightly linked biochemical and biophysical methods. Results from the Viking mission indicated that the surface of Mars is highly oxidised, making the presence of organic material unlikely. The chances of detecting traces of life would be higher in buried sediments. How do biological cells or macromolecules behave on various mineral surfaces? How are they affected by the physical and chemical nature of the surface, by the presence of bound water or salt? These questions should be tackled through studies of model systems and simulations. As examples, the in vitro selection of RNA molecules with specific molecular affinity (aptamers), and non-genomic peptide synthesis, can be used to study interactions between an information-containing molecules and various supporting surfaces. (6) Current very imaginative studies of the nature and origin of life should also be strongly encouraged. These include, for example, the exploration of new macromolecular combinations that allow the coupling of information content and reactivity.

Planning a trip to Mars to bring back samples for analysis is too important a biological venture to be left to physicists, chemists and geologists (or even areologists) alone...!

References
Q1: Au: Please check Edited marks whether should be underlined or not?

Thanks.
IMMEDIATE RESPONSE REQUIRED

Please follow these instructions to avoid delay of publication.

☐ READ PROOFS CAREFULLY

- This will be your only chance to review these proofs.
- Please note that the volume and page numbers shown on the proofs are for position only.

☐ ANSWER ALL QUERIES ON PROOFS

- Mark all corrections directly on the proofs. Note that excessive author alterations may ultimately result in delay of publication and extra costs may be charged to you.

☐ CHECK FIGURES AND TABLES CAREFULLY

- Because reproduction of color figures is free, authors will not see proofs. A placeholder xerox or box will appear on the galley proof. FPO = For Position Only.
- Check size, numbering, and orientation of figures. Check quality of figures directly from the galley proofs. The reproduction is 1200 dpi, and although it is not indicative of final printed quantity, it is adequate for checking purposes.
- Review figure legends to ensure that they are complete.
- Check all tables. Review layout, title, and footnotes.

☐ COMPLETE REPRINT ORDER FORM

- Authors are provided 50 reprints free of charge. Fill out the attached reprint order form; you must provide us with a shipping address. It is important to return the form even if you are not ordering additional reprints. You may, if you wish, pay for the reprints with a credit card. Reprints will be mailed only after your article appears in print. This is the most opportune time to order reprints. If you wait until after your article comes off press, the reprints will be considerably more expensive.

☐ ADDITIONAL COPIES

- If you wish to purchase additional copies of the journal in which your article appears, please contact Neil Adams at (212) 850-8839, fax (212) 850-6021, or E-mail at nadams@wiley.com

RETURN ☐ PROOFS
☐ REPRINT ORDER FORM
☐ CTA (If you have not already signed one)

Send complete package to:
John Wiley & Sons, Inc.
Wiley-Liss Production
605 Third Avenue (9th Fl.)
New York, NY 10158-0012
attn: Andrea Ritola

RETURN WITHIN 48 HOURS OF RECEIPT VIA EXPRESS MAIL

QUESTIONS?

Contact Ms. Andrea Ritola, Journal Production Editor Refer to article # ________________________

E-mail: aritola@wiley.com Telephone: 212-850-6550

☐ IF THIS BOX IS CHECKED, YOUR ARTICLE IS BEING TREATED AS A RUSH AND NEEDS TO BE RETURNED WITHIN 24 HOURS.

Fax corrections to 212-850-6825/8852 and Express Mail complete package to above address.
COPYRIGHT TRANSFER AGREEMENT

Date: ____________________________

To: ________________________________

Re: Manuscript entitled ________________________________ (the "Contribution")

for publication in ________________________________ (the "Journal")

Dear Contributor(s):

Thank you for submitting your Contribution for publication. In order to expedite the publishing process and enable Wiley to disseminate your work to the fullest extent, we need to have this Copyright Transfer Agreement signed and returned to us as soon as possible. If the Contribution is not accepted for publication this Agreement shall be null and void.

A. COPYRIGHT

1. The Contributor assigns to Wiley, during the full term of copyright and any extensions or renewals of that term, all copyright in and to the Contribution, including but not limited to the right to publish, republish, transmit, sell, distribute and otherwise use the Contribution and the material contained therein in electronic and print editions of the Journal and in derivative works throughout the world, in all languages and in all media of expression now known or later developed, and to license or permit others to do so.

2. Reproduction, posting, transmission or other distribution or use of the Contribution or any material contained therein, in any medium as permitted hereunder, requires a citation to the Journal and an appropriate credit to Wiley as Publisher, suitable in form and content as follows: (Title of Article, Author, Journal Title and Volume/Issue Copyright © [year] Wiley-Liss, Inc. or copyright owner as specified in the Journal.)

B. RETAINED RIGHTS

Notwithstanding the above, the Contributor or, if applicable, the Contributor's Employer, retains all proprietary rights other than copyright, such as patent rights, in any process, procedure or article of manufacture described in the Contribution, and the right to make oral presentations of material from the Contribution.

C. OTHER RIGHTS OF CONTRIBUTOR

Wiley grants back to the Contributor the following:

1. The right to share with colleagues print or electronic "preprints" of the unpublished Contribution, in form and content as accepted by Wiley for publication in the Journal. Such preprints may be posted as electronic files on the Contributor's own website for personal or professional use, or on the Contributor's internal university or corporate networks/intranet, or secure external website at the Contributor's institution, but not for commercial sale or for any systematic external distribution by a third party (e.g., a listserv or database connected to a public access server). Prior to publication, the Contributor must include the following notice on the preprint: "This is a preprint of an article accepted for publication in [Journal title] © copyright (year) (copyright owner as specified in the Journal)". After publication of the Contribution by Wiley, the preprint notice should be amended to read as follows: "This is a preprint of an article published in [include the complete citation information for the final version of the Contribution as published in the print edition of the Journal]", and should provide an electronic link to the Journal's WWW site, located at the following Wiley URL: http://www.interscience.Wiley.com/. The Contributor agrees not to update the preprint or replace it with the published version of the Contribution.

2. The right, without charge, to photocopy or to transmit online or to download, print out and distribute to a colleague a copy of the published Contribution in whole or in part, for the Contributor's personal or professional use, for the
advancement of scholarly or scientific research or study, or for corporate informational purposes in accordance with Paragraph D.2 below.

3. The right to republish, without charge, in print format, all or part of the material from the published Contribution in a book written or edited by the Contributor.

4. The right to use selected figures and tables, and selected text (up to 250 words, exclusive of the abstract) from the Contribution, for the Contributor's own teaching purposes, or for incorporation within another work by the Contributor that is made part of an edited work published (in print or electronic format) by a third party, or for presentation in electronic format on an internal computer network or external website of the Contributor or the Contributor's employer.

5. The right to include the Contribution in a compilation for classroom use (course packs) to be distributed to students at the Contributor's institution free of charge or to be stored in electronic format in datarooms for access by students at the Contributor's institution as part of their course work (sometimes called “electronic reserve rooms”) and for in-house training programs at the Contributor's employer.

D. CONTRIBUTIONS OWNED BY EMPLOYER
1. If the Contribution was written by the Contributor in the course of the Contributor's employment (as a "work-made-for-hire" in the course of employment), the Contribution is owned by the company/employer which must sign this Agreement (in addition to the Contributor’s signature), in the space provided below. In such case, the company/employer hereby assigns to Wiley, during the full term of copyright, all copyright in and to the Contribution for the full term of copyright throughout the world as specified in paragraph A above.

2. In addition to the rights specified as retained in paragraph B above and the rights granted back to the Contributor pursuant to paragraph C above, Wiley hereby grants back, without charge, to such company/employer, its subsidiaries and divisions, the right to make copies of and distribute the published Contribution internally in print format or electronically on the Company's internal network. Upon payment of the Publisher's reprint fee, the institution may distribute (but not resell) print copies of the published Contribution externally. Although copies so made shall not be available for individual re-sale, they may be included by the company/employer as part of an information package included with software or other products offered for sale or license. Posting of the published Contribution by the institution on a public access website may only be done with Wiley's written permission, and payment of any applicable fee(s).

E. GOVERNMENT CONTRACTS
In the case of a Contribution prepared under U.S. Government contract or grant, the U.S. Government may reproduce, without charge, all or portions of the Contribution and may authorize others to do so, for official U.S. Government purposes only, if the U.S. Government contract or grant so requires. (U.S. Government Employees: see note at end).

F. COPYRIGHT NOTICE
The Contributor and the company/employer agree that any and all copies of the Contribution or any part thereof distributed or posted by them in print or electronic format as permitted herein will include the notice of copyright as stipulated in the Journal and a full citation to the Journal as published by Wiley.

G. CONTRIBUTOR'S REPRESENTATIONS
The Contributor represents that the Contribution is the Contributor's original work. If the Contribution was prepared jointly, the Contributor agrees to inform the co-Contributors of the terms of this Agreement and to obtain their signature to this Agreement or their written permission to sign on their behalf. The Contribution is submitted only to this Journal and has not been published before, except for "preprints" as permitted above. (If excerpts from copyrighted works owned by third parties are included, the Contributor will obtain written permission from the copyright owners for all uses as set forth in Wiley's permissions form or in the Journal's Instructions for Contributors, and show credit to the sources in the Contribution.) The Contributor also warrants that the Contribution contains no libelous or unlawful statements, does not infringe on the rights or privacy of others, or contain material or instructions that might cause harm or injury.
CHECK ONE:

[____] Contributor-owned work

Contributor's signature __________________________ Date __________________________

Type or print name and title

Co-contributor's signature __________________________ Date __________________________

Type or print name and title

ATTACHED ADDITIONAL SIGNATURE PAGE AS NECESSARY

[____] Company/Institution-owned work

(made-for-hire in the course of employment)

Company or Institution (Employer-for-Hire) __________________________ Date __________________________

Authorized signature of Employer __________________________ Date __________________________

[____] U.S. Government work

Note to U.S. Government Employees

A Contribution prepared by a U.S. federal government employee as part of the employee's official duties, or which is an official U.S. Government publication is called a "U.S. Government work," and is in the public domain in the United States. In such case, the employee may cross out Paragraph A.1 but must sign and return this Agreement. If the Contribution was not prepared as part of the employee's duties or is not an official U.S. Government publication, it is not a U.S. Government work.

[____] U.K. Government work (Crown Copyright)

Note to U.K. Government Employees

The rights in a Contribution prepared by an employee of a U.K. government department, agency or other Crown body as part of his/her official duties, or which is an official government publication, belong to the Crown. In such case, the Publisher will forward the relevant form to the Employee for signature.
Please complete this form even if you are not ordering reprints. This form MUST be returned with your corrected proofs and original manuscript. Your reprints will be shipped approximately 4 weeks after publication. Reprints ordered after printing will be substantially more expensive.

PREPUBLICATION REPRINT ORDER FORM

JOURNAL
BioEssays

VOLUME
ISSUE

<table>
<thead>
<tr>
<th>No. of Pages</th>
<th>100 Reprints</th>
<th>200 Reprints</th>
<th>300 Reprints</th>
<th>400 Reprints</th>
<th>500 Reprints</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>$336</td>
<td>$501</td>
<td>$694</td>
<td>$890</td>
<td>$1052</td>
</tr>
<tr>
<td>5-8</td>
<td>$469</td>
<td>$703</td>
<td>$987</td>
<td>$1281</td>
<td>$1477</td>
</tr>
<tr>
<td>9-12</td>
<td>$594</td>
<td>$923</td>
<td>$1234</td>
<td>$1565</td>
<td>$1850</td>
</tr>
<tr>
<td>13-16</td>
<td>$714</td>
<td>$1156</td>
<td>$1527</td>
<td>$1901</td>
<td>$2273</td>
</tr>
<tr>
<td>17-20</td>
<td>$794</td>
<td>$1340</td>
<td>$1775</td>
<td>$2212</td>
<td>$2648</td>
</tr>
<tr>
<td>21-24</td>
<td>$911</td>
<td>$1529</td>
<td>$2031</td>
<td>$2536</td>
<td>$3037</td>
</tr>
<tr>
<td>25-28</td>
<td>$1004</td>
<td>$1707</td>
<td>$2267</td>
<td>$2828</td>
<td>$3388</td>
</tr>
<tr>
<td>29-32</td>
<td>$1108</td>
<td>$1894</td>
<td>$2515</td>
<td>$3135</td>
<td>$3755</td>
</tr>
<tr>
<td>33-36</td>
<td>$1219</td>
<td>$2092</td>
<td>$2773</td>
<td>$3456</td>
<td>$4143</td>
</tr>
<tr>
<td>37-40</td>
<td>$1329</td>
<td>$2290</td>
<td>$3033</td>
<td>$3776</td>
<td>$4528</td>
</tr>
</tbody>
</table>

REPRINTS ARE ONLY AVAILABLE IN LOTS OF 100. IF YOU WISH TO ORDER MORE THAN 500 REPRINTS, PLEASE CONTACT OUR REPRINTS DEPARTMENT AT (212) 850-8789 FOR A PRICE QUOTE.

Please send me _____________________ reprints of the above article at $__________________________

Please add appropriate State and Local Tax (Tax Exempt No.____________________) $__________________________

Please add 5% Postage and Handling $__________________________

TOTAL AMOUNT OF ORDER $__________________________

International orders must be paid in currency and drawn on a U.S. bank

Please check one:
- [] Check enclosed
- [] Credit Card
- [] Visa
- [] MasterCard

If credit card order, charge to:
- [] American Express
- [] Bill me
- [] Credit Card

Credit Card No __________________________
Signature __________________________
Exp. Date __________________________

BILL TO:
Name __________________________

Institution __________________________

Address __________________________

Purchase Order No. __________________________

SHIP TO:
Name __________________________
(Please, no P.O. Box numbers)

Institution __________________________

Address __________________________

Phone __________________________
Fax __________________________

E-mail __________________________
Acrobat annotation tools can be very useful for indicating changes to the PDF proof of your article. By using Acrobat annotation tools, a full digital pathway can be maintained for your page proofs.

The NOTES annotation tool can be used with either Adobe Acrobat 3.0x or Adobe Acrobat 4.0. Other annotation tools are also available in Acrobat 4.0, but this instruction sheet will concentrate on how to use the NOTES tool. Acrobat Reader, the free Internet download software from Adobe, DOES NOT contain the NOTES tool. In order to softproof using the NOTES tool you must have the full software suite Adobe Acrobat Exchange 3.0x or Adobe Acrobat 4.0 installed on your computer.

Steps for Softproofing using Adobe Acrobat NOTES tool:

1. Open the PDF page proof of your article using either Adobe Acrobat Exchange 3.0x or Adobe Acrobat 4.0. Proof your article on-screen or print a copy for markup of changes.

2. Go to File/Preferences/Annotations (in Acrobat 4.0) or File/Preferences/Notes (in Acrobat 3.0) and enter your name into the “default user” or “author” field. Also, set the font size at 9 or 10 point.

3. When you have decided on the corrections to your article, select the NOTES tool from the Acrobat toolbox and click in the margin next to the text to be changed.

4. Enter your corrections into the NOTES text box window. Be sure to clearly indicate where the correction is to be placed and what text it will effect. If necessary to avoid confusion, you can use your TEXT SELECTION tool to copy the text to be corrected and paste it into the NOTES text box window. At this point, you can type the corrections directly into the NOTES text box window. **DO NOT correct the text by typing directly on the PDF page.**

5. Go through your entire article using the NOTES tool as described in Step 4.

6. When you have completed the corrections to your article, go to File/Export/Annotations (in Acrobat 4.0) or File/Export/Notes (in Acrobat 3.0). Save your NOTES file to a place on your harddrive where you can easily locate it. **Name your NOTES file with the article number assigned to your article in the original softproofing e-mail message.**

7. **When closing your article PDF be sure NOT to save changes to original file.**

8. To make changes to a NOTES file you have exported, simply re-open the original PDF proof file, go to File/Import/Notes and import the NOTES file you saved. Make changes and re-export NOTES file keeping the same file name.

9. When complete, attach your NOTES file to a reply e-mail message. Be sure to include your name, the date, and the title of the journal your article will be printed in.